Report for the Associated Press

March 2016 Presidential Preference Primary Election Study in Florida

Randall K. Thomas, Frances M. Barlas, Linda McPetrie,

Annie Weber, Robert Benford, & Mansour Fahimi

GfK Custom Research

May 2016; Revised September 2016
Overview

Exit polls have traditionally been used by news organizations for two main purposes. The first has been to add ‘color commentary’ around election vote choices by focusing on the attitudes and beliefs that voters have, providing a deeper understanding of voters’ choices. The second purpose of exit polls has been to help news organizations improve their election projections within states. Traditionally, exit polls have selected a representative sample of polling places within a state and then, within the polling places, randomly selected exiting voters to participate in surveys that ask about vote choices, demographics, and attitudes across a number of election-related issues. Exit polls have been facing a number of challenges and undergoing changes, as early and absentee voting have increased. Developing an alternative polling supplement, such as using telephone polls of early and absentee voters, has been one approach to address the increasing proportion of voters who vote early or by absentee ballot.

The Associated Press (AP) and GfK are jointly undertaking a series of tests around elections and primaries to explore the feasibility of employing online administration of surveys as an alternative to exit polling in select states. These tests use probability-based sample from GfK’s KnowledgePanel® (KP) – which is the largest online panel in the United States with about 55,000 members for which panelists are selected with known probabilities from an Address Based Sampling (ABS) frame that represents U.S. households. Due to its size, KP can be useful for state-specific studies. However, even with the largest probability panel in the United States, some states, especially when filtered for likely voters, may yield smaller samples than desired. One technique GfK has been developing to address this issue is to use non-probability sample (NPS) to supplement KP sample. By understanding and adjusting for the biases present in the non-probability samples, we can blend the samples to enable larger sample
sizes. This allows for more detailed subgroup analysis, while maintaining data quality and helping with cost effectiveness.

Our first study used an online poll to predict election outcomes for the Governor and Senator contests in the November 2014 general elections that took place in Georgia and Illinois. The results were reported separately.¹ Our general findings were that using GfK’s probability-based KP sample alone produced superior outcomes than using NPS alone, and that KP-only sample outperformed exit polls (before the exit polls were weighted to final election outcomes). However, using KP as the basis to adjust for biases in the NPS enabled us to blend the samples together as a larger Calibrated KP+NPS sample. We found the combined calibrated solution yielded reasonably close approximations to actual vote proportions, outperforming the accuracy of exit polls (before they were weighted to final election outcomes). In addition, the results were quite comparable when looking at demographics and attitudes related to vote choice when compared with exit polls. Another purpose of this first study was to examine the influence of likely voter models. We found that a simpler model gave similar, and sometimes closer, approximations to the vote outcomes than the more complex, traditional model.

To follow-up on the first study, we conducted a second online poll in Kentucky and Mississippi in November 2015, with the results reported separately.² We screened for self-identified registered likely voters drawn from two different sample types: 1) GfK’s probability-based KP sample and 2) NPS sources. We compared the actual election outcomes for the Governor, Secretary of State, and Attorney General contests in both states, as well as the Lieutenant Governor contest in Mississippi, with results among registered likely voters from the KP sample and from a combination of the KP and NPS sources using our calibration.

methodology. Generally, we replicated results for the New Likely Voter model found in the prior GA-IL study, finding that in these two states (KY and MS) the New Likely Voter model was superior to the Traditional Likely Voter model (and better than using no likely voter model at all) for both KP-only sample and Calibrated KP+NPS sample. Results for the KP-only sample were more accurate than with the larger Calibrated KP+NPS sample. No exit polls were conducted in the KY and MS contests to allow for a comparison.

While our first two studies were general election studies with a Democrat and a Republican to select from (with third-party candidates in some contests), our third study examined the 2016 presidential preference primary in Florida, with separate contests for Republicans and Democrats. There were multiple candidates in each contest, and not all of them were running active campaigns. Our goals for this study were to:

1. replicate the likely voter model results from Studies 1 and 2;
2. examine effects of field period length on election result accuracy;
3. compare online sample estimates with exit poll outcomes and results from telephone polls for absentee or early voters;
4. examine the optimal size of KP samples and consider how small a sample we can deploy and still achieve accurate results; and
5. compare attitudinal and demographic findings to the existing exit polling.

Overall, the vote outcome estimates from this third online poll were close to the actual election outcomes for both the Democratic and Republican presidential preference primaries, accurately predicting the winner and order of candidates in each contest using both the KP-only samples and the Calibrated KP+NPS samples. For example, the KP-only sample had an average error versus the actual vote of 1.1 percentage points.
Regarding field period, we found that a 4-day field period was slightly more accurate than a 7-day field period, though the combined sample was more accurate than the separate field periods.

We compared the simpler New Likely Voter model developed in the GA-IL study against an abbreviated version of the traditional model and found that, again, the new model was superior to the traditional model for predicting election outcomes.

Another interest was comparing the use of full KnowledgePanel samples (i.e., all available panel members in a state) with smaller sample sizes that were more demographically balanced (i.e., probability proportional to size sample selection, or PPS samples) to better reflect the current population profile of a state. These smaller sample sizes generally yielded fairly accurate election predictions, though we discuss some of the limitations we saw.

An additional major finding of this study was that, when compared to the National Election Pool (NEP) exit poll, both online sample types – KP-only and Calibrated KP+NPS – had similar attitudinal profiles associated with the candidate choices. Overall, we, again, found that results from online polls can be a viable alternative to the traditional exit poll methodology. We provide some lessons learned that will be used to help inform the next round of pilot testing.

3 The available KP sample within a state at any given time may not be an exact reflection of the state’s general population due to ongoing recruitment and attrition. Thus, our best practice in sampling, using probability proportional to size sample selection (PPS) to select demographically-balanced samples is typically employed.
Method

Field Periods

The web-based study fielded in Florida and had two field periods – a 7-day field period from March 8 (5:30 pm Eastern) to March 15 (12:30 pm Eastern) and a 4-day field period from March 11 (11:40 am Eastern) to March 15 (12:30 pm Eastern). KP panelists were sent 2 reminders to complete the study; for the 7-day field, reminders were sent Friday and Monday mornings, while the 4-day field reminders were sent on Sunday and Monday mornings. The election estimates (pooled across both the 4- and 7-day field periods) for both parties were delivered to AP at 4:05 pm Eastern on Election Day, March 15.

Respondents

We selected all available Florida-based sample members from KP and randomly assigned half to each field period. For the NPS sources, we used demographic factors to establish quotas for respondents – proportions for levels of age-sex, race-ethnicity, and education were established as limits based on targets derived from the Current Population Survey.

The total number of qualified completes is shown in Table 1 by sample source, field period, primary party voting preference, and likely voter status. We had 1,860 total completed interviews from the KnowledgePanel and 3,329 from non-probability sample (all 18 years of age and older and living in Florida) – which were then screened to be either likely voters or not likely voters with the simplified New Likely Voter model.
Table 1. Completed Interviews by Sample Source, Field Period, Primary Party, Likely Voter Status

<table>
<thead>
<tr>
<th>Field Period</th>
<th>Primary Party</th>
<th>KnowledgePanel</th>
<th>Non-probability Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Likely Voter¹</td>
<td>Not Likely Voter</td>
</tr>
<tr>
<td>4 Day</td>
<td>Republican</td>
<td>298</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Democrat</td>
<td>239</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Neither</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>7 Day</td>
<td>Republican</td>
<td>300</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Democrat</td>
<td>281</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Neither</td>
<td>0</td>
<td>87</td>
</tr>
<tr>
<td>Overall Totals</td>
<td></td>
<td>1,118</td>
<td>742</td>
</tr>
</tbody>
</table>

¹ Likely voter calculated using the New Likely Voter model.

Table 2 presents the number of completes obtained by day for both field periods and sample types.

Table 2. Completed Interviews by Day for Sample Source and Field Period

<table>
<thead>
<tr>
<th>Date of Completion</th>
<th>KnowledgePanel</th>
<th>Non-probability Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 Day</td>
<td>7 Day</td>
</tr>
<tr>
<td>March 8, 2016</td>
<td>22</td>
<td>72</td>
</tr>
<tr>
<td>March 9, 2016</td>
<td>484</td>
<td>271</td>
</tr>
<tr>
<td>March 10, 2016</td>
<td>145</td>
<td>359</td>
</tr>
<tr>
<td>March 11, 2016</td>
<td>481</td>
<td>158</td>
</tr>
<tr>
<td>March 12, 2016</td>
<td>130</td>
<td>45</td>
</tr>
<tr>
<td>March 13, 2016</td>
<td>151</td>
<td>17</td>
</tr>
<tr>
<td>March 14, 2016</td>
<td>113</td>
<td>70</td>
</tr>
<tr>
<td>March 15, 2016</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>896</td>
<td>964</td>
</tr>
</tbody>
</table>
Online Sample Weighting

Standard demographic weights were computed for all participants, regardless of voter registration and likelihood to vote for each sample source (KP and NPS). State-level population benchmarks based on Current Population Survey targets from March 2015 were used to create weighting targets based on age-sex, education, income, and race-ethnicity. KP and NPS data were then combined using an optimal blending process in proportion to their respective effective sample sizes (Fahimi, 1994) using our calibration methodology where we calibrate using additional attitudinal and behavioral dimensions that have been found to differentiate between probability-based and NPS respondents (Fahimi et al., 2015). These questions included weekly time spent on the Internet for personal use, number of online surveys completed monthly, average daily duration of television viewing, tendency to be an early adopter of new products, frequency of coupon use when shopping, and number of moves in the past five years.

National Election Pool Exit Poll

The NEP exit poll was conducted by Edison Research, with in-person exit interviews for Election Day voters combined with a telephone interview component for those who voted by way of absentee ballot or voted early. Descriptions of the exit poll methodology were provided to GfK by AP. In-person interviews were conducted in three waves on Election Day, March 15. Each wave randomly selected voters from a stratified probability sample of polling places within Florida. The telephone interviews were conducted between March 8 and March 14 on both landline phones and cellphones drawn from a random-digit dial sample. The complete exit poll had a total of 3,104 Republican voters and 2,350 Democratic voters, which included telephone interviews with 283 Republican and 217 Democratic voters who had voted by absentee ballot or voted early.
Exit poll results. The exit poll crosstabs were released in stages, which varied in both the number of cases completed and the weighting algorithms used. Results from two releases were used for this report to compare with the results obtained in the web-based interviews. Intermediate exit poll results (shown in Appendix A) included the first two waves of in-person interviews at the precinct level and all data from the telephone calls to early/absentee voters (with a total of 1,328 Republican and 1,232 Democratic voters). These intermediate results were released to NEP members and subscribers at 5:00 pm on March 15, prior to polls closing. The final exit poll results (shown in Appendix B) were released the day after the election and included interviews from all three waves of in-person precinct interviews along with all telephone interview cases (with a total of 1,907 Republican and 1,659 Democratic voters).

Exit poll data adjustments. There are two major forms of useful output from the NEP exit poll – first, the crosstabs of demographics and attitudes by candidate vote choice and second, the estimate of candidate vote proportions. Each output has associated data adjustments that are independent yet designed to more accurately yield representative results.

Exit poll crosstab weighting. The intermediate results were weighted using targets of estimated vote counts from a combination of pre-election polls and the first two waves of the exit poll. The final exit poll results, reported in Appendix B, were weighted to the final vote count. In both sets of results, the early and absentee vote estimates (telephone) were combined with Election Day estimates (in-person) in a 40 to 60 ratio. The NEP used past voting history to estimate the size of the absentee and early vote.

Model-based candidate estimates. The exit poll candidate estimates were derived from a series of statistical models that use current and past results from a random sample of precincts. For the Florida presidential primary, candidate estimates used the best sample precinct model –
that is, the model that had the smallest standard error in the difference between the estimates for the top two candidates. The best sample precinct model was based on data from all three waves of in-person data collection and all telephone interviews.
Results

Likely Voter Models

We first compared results using the New Likely Voter model against a modified version of the Traditional Likely Voter model. The questions from the Traditional Likely Voter model were modified slightly to allow respondents to answer all relevant questions from both models. The new model identified a larger subset of likely voters (LV), including all of those identified by the traditional model, as well as some others who would have been screened out by the traditional model. Both models were adjusted slightly from the models used in prior studies to reflect the difference in voting in a closed-primary state, as is the case with Florida, as opposed to the general election likely voter models used previously.

The Traditional Likely Voter model was limited to respondents who were registered to vote (and registered for either the Republican or Democratic parties) and based on a complex set of definitions that includes past vote frequency, past voting behavior, whether or not they have already voted, likelihood to vote, interest in news about the election, and knowing where to vote. This model required eight survey questions based on four different patterns of survey answers to define a likely voter. This model is very similar to what many others in the polling sector use.

The New Likely Voter model was also limited to respondents who reported being registered to vote and registered with the Republican or Democratic party, and was based on responses to two additional questions; the model includes those who 1) already voted or say they will definitely vote or 2) say they probably will vote and also indicated that they always or nearly always vote in primary elections.

We calculated the ‘average error’ to determine accuracy. The average error is computed by first determining the absolute deviation of each candidate’s predicted vote proportions from
the actual results. The mean of the candidate deviations is then computed for each contest, and then the average is computed across contests, treating each contest as equivalent.\(^4\) To match the actual ballot presentation that voters would have in Florida, the web-based questionnaire presented all candidates who were included on the Florida ballot to respondents (the Florida ballot contained 13 Republican and 3 Democratic candidates) in alphabetical order. For purposes of analysis, we looked at the four Republican and two Democratic candidates with active campaigns at the time of the primary, along with an ‘Other candidate’ category for each party. We then compared actual vote totals with our estimated proportions for the active candidates and ‘Other.’

First, we compared the two likely voter models with the demographically weighted KP sample (Table 3). We found that across both primary contests, the average absolute deviation between election outcomes and survey results (average error) was larger when the Traditional Likely Voter model was used and smaller with the New Likely Voter model. The average error for the New Likely Voter model was 1.1 percentage points, confirming findings from the earlier general election studies.

\(^4\) We did not average across all candidate deviations individually since the Republican contest, with more candidates, had more deviations and would therefore potentially have an unequal influence on the overall mean value. Our approach instead equates and averages the error of the two independent samples across each party’s primary.
Table 3. Vote Outcomes for Demographically Weighted KnowledgePanel Sample by Likely Voter Model

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>Actual</th>
<th>KP - Traditional LV</th>
<th>KP-New LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted Cruz</td>
<td>17.1%</td>
<td>16.3%</td>
<td>16.5%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.8%</td>
<td>7.7%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.0%</td>
<td>24.0%</td>
<td>23.8%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>45.7%</td>
<td>46.7%</td>
<td>47.2%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>3.3%</td>
<td>5.3%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Democratic Candidate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillary Clinton</td>
<td>64.4%</td>
<td>69.0%</td>
<td>65.5%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>33.3%</td>
<td>29.5%</td>
<td>33.1%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>2.3%</td>
<td>1.4%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Average Error</td>
<td>2.3</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

We next looked at the non-probability sample (NPS), as shown in Table 4. In general, the New Likely Voter model was associated with the least average error (1.5 percentage points), as we saw with the KP results.

Table 4. Vote Outcomes for Demographically Weighted Non-probability Sample by Likely Voter Model

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>Actual</th>
<th>NPS - Traditional LV</th>
<th>NPS - New LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted Cruz</td>
<td>17.1%</td>
<td>12.7%</td>
<td>13.4%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.8%</td>
<td>5.8%</td>
<td>5.7%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.0%</td>
<td>26.3%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>45.7%</td>
<td>48.8%</td>
<td>48.4%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>3.3%</td>
<td>6.4%</td>
<td>7.4%</td>
</tr>
<tr>
<td>Democratic Candidate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillary Clinton</td>
<td>64.4%</td>
<td>65.5%</td>
<td>64.8%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>33.3%</td>
<td>31.8%</td>
<td>32.8%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>2.3%</td>
<td>2.7%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Average Error</td>
<td>1.7</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>
We next looked at the Calibrated KP+NPS samples under the similar conditions as used for the individual KP and NPS samples (see Table 5). The New Likely Voter model again had the lowest average error (1.1 percentage points) with the combined, calibrated sample.

Table 5. Vote Outcomes for Calibrated KP+NPS Sample by Likely Voter Model

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>Actual</th>
<th>Calibrated KP + NPS - Traditional LV</th>
<th>Calibrated KP + NPS - New LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted Cruz</td>
<td>17.1%</td>
<td>16.4%</td>
<td>16.4%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.8%</td>
<td>6.6%</td>
<td>6.6%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.0%</td>
<td>25.0%</td>
<td>24.3%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>45.7%</td>
<td>46.9%</td>
<td>47.3%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>3.3%</td>
<td>5.2%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Democratic Candidate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillary Clinton</td>
<td>64.4%</td>
<td>67.4%</td>
<td>65.4%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>33.3%</td>
<td>30.1%</td>
<td>32.3%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>2.3%</td>
<td>2.5%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Average Error</td>
<td>1.7</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

Effects of Field Period

We next compared results for the demographically weighted KP and the Calibrated KP+NPS samples (see Table 6) and looked for any differences in results by field period (the overall combined sample versus 4-day versus 7-day groups). The average error was somewhat lower for the 4-day field period than the 7-day field period for both the KP and Calibrated KP+NPS samples. However, the separate field periods were both significantly higher in average error than the results with the two field periods combined, most likely reflecting the impact of larger samples and their associated higher rates of precision.
Table 6. Vote Outcomes for Field Period by Sample Type

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>KnowledgePanel - Demo Weighted</th>
<th>Calibrated KP+NPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Overall</td>
</tr>
<tr>
<td>Ted Cruz</td>
<td>17.1%</td>
<td>16.5%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.8%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.0%</td>
<td>23.8%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>45.7%</td>
<td>47.2%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>3.3%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Democratic Candidate</th>
<th>KnowledgePanel - Demo Weighted</th>
<th>Calibrated KP+NPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Overall</td>
</tr>
<tr>
<td>Hillary Clinton</td>
<td>64.4%</td>
<td>65.5%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>33.3%</td>
<td>33.1%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>2.3%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Average Error</td>
<td>1.1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Comparison with Exit Poll Vote Proportions

The NEP exit poll projected results for 5 candidates for the Republicans and 2 candidates for the Democrats, though Florida listed 13 candidates on the Republican ballot and 3 candidates on the Democratic ballot. Since the exit poll reported results for only the subset of candidates with projections summing to 100%, we rescaled the actual outcomes to represent only those 5 candidates in the Republican contest and the 2 candidates in the Democratic contest (so each would also sum to 100% and be comparable to the exit poll results). In addition, we rescaled the KP-only and Calibrated KP+NPS samples for those same candidates to compare our study with the exit poll results. Table 7 displays these comparisons. Both the rescaled KP-only and
Calibrated KP+NPS samples had a lower average error (both 1.0 percentage points) than the exit poll results (2.2 percentage points).

Table 7. Vote Outcomes – Comparisons of Exit Poll with Sample Sources

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>Actual</th>
<th>Actual Rescaled</th>
<th>NEP Exit Poll 1</th>
<th>KP-only Demo Weighted</th>
<th>Calibrated KP+NPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ben Carson</td>
<td>0.9%</td>
<td>0.9%</td>
<td>1.0%</td>
<td>0.5%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Ted Cruz</td>
<td>17.1%</td>
<td>17.6%</td>
<td>17.7%</td>
<td>17.3%</td>
<td>17.2%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.8%</td>
<td>6.9%</td>
<td>6.2%</td>
<td>7.9%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.0%</td>
<td>27.7%</td>
<td>28.7%</td>
<td>24.9%</td>
<td>25.4%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>45.7%</td>
<td>46.9%</td>
<td>46.4%</td>
<td>49.4%</td>
<td>49.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Democratic Candidate</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillary Clinton</td>
<td>64.4%</td>
<td>65.9%</td>
<td>62.0%</td>
<td>66.5%</td>
<td>66.9%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>33.3%</td>
<td>34.1%</td>
<td>38.0%</td>
<td>33.5%</td>
<td>33.1%</td>
</tr>
</tbody>
</table>

Average Error 2.2 1.0 1.0

1 Best sample precinct model using only exit poll results combined with absentee and early voter telephone poll results

Early/Absentee Vote Effects

We next compared the results for those who indicated they would vote early or by absentee ballot with those who indicated they would vote on Election Day. Table 8 summarizes the weighted combined proportion of all voters who voted either early or absentee by sample source and party primary. Slightly more than half of all voters voted early or by absentee ballot in Florida.5

The NPS-only sample was the closest to the actual proportion of those who voted early or absentee in Florida. Note that the proportions of early or absentee voting for the online samples are the estimates based on self-reported data and not based on any a priori assumptions or weighting of early and absentee vote proportions to derive vote estimates. Data were weighted

5 As indicated by AP, of all the interviews conducted by the NEP, 9.2% of the Democratic interviews (n=217) and 9.1% of the Republican interviews (n=283) were conducted by telephone, which was designed to represent those who voted early or by absentee ballot.
using an overall demographic weight for all respondents regardless of vote likelihood or Election Day or early and absentee voting proportions.

Table 8. Proportions of Early/Absentee Voters by Sample Source and Party Primary

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>KP-only</th>
<th>NPS-only</th>
<th>Calibrated KP+NPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida Republican Primary</td>
<td>51.0%</td>
<td>58.3%</td>
<td>48.5%</td>
<td>54.9%</td>
</tr>
<tr>
<td>Florida Democratic Primary</td>
<td>52.0%</td>
<td>64.5%</td>
<td>49.2%</td>
<td>55.6%</td>
</tr>
<tr>
<td>Average Deviation from Actual</td>
<td>9.9</td>
<td>2.7</td>
<td>3.7</td>
<td></td>
</tr>
</tbody>
</table>

Table 9 summarizes the vote choice proportions for each party’s primary overall and by early/absentee and Election Day voters. We compare the actual vote distribution to the NEP exit poll, the KP-only sample, and the Calibrated KP+NPS sample. The actual vote counts and distributions among early/absentee and Election Day voters were provided to GfK by the AP Election Research Group. Although there were differences in projected proportions by voting method and sample, all samples showed the correct order of actual candidate outcomes.

To assess comparability, we computed the absolute difference between the actual outcome and each poll’s results, averaged within party, and then averaged across contests. As above, since the NEP exit poll reported results for only a subset of candidates with projections summing to 100%, we rescaled the actual outcomes to represent only those 5 candidates in the Republican contest and the 2 candidates in the Democratic contest (so each would also sum to 100% and be comparable to the exit poll results). In addition, we rescaled the KP-only and Calibrated KP+NPS samples for those same candidates to compare our study with the exit poll results.
Focusing first on early/absentee voters, both the rescaled KP-only and Calibrated KP+NPS samples had a lower average error (1.0 and 0.9 percentage points, respectively) than the NEP telephone poll of absentee/early voters (4.5 percentage points). The biggest source of error for the NEP telephone poll of absentee/early voters was found in the Democratic race, where average error was 8.4 percentage points. Among Election Day voters, on the other hand, the NEP exit poll had a lower average error (0.7 percentage points) than both the KP-only and the Calibrated KP+NPS samples (3.0 and 2.7 percentage points, respectively).
Table 9. Results for Early/Absentee and Election Day Voters by Sample Source

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>Actual Rescaled</th>
<th>NEP Exit Poll</th>
<th>KP-only Demo Weighted</th>
<th>Calibrated KP+NPS</th>
<th>Overall Absentee/Early Voters</th>
<th>Absentee/Early Voters</th>
<th>Calibrated KP+NPS Absentee/Early Voters</th>
<th>Election Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ben Carson</td>
<td>0.9%</td>
<td>1.0%</td>
<td>0.5%</td>
<td>0.9%</td>
<td>1.4%</td>
<td>1.0%</td>
<td>0.8%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Ted Cruz</td>
<td>17.6%</td>
<td>17.7%</td>
<td>17.3%</td>
<td>17.2%</td>
<td>16.2%</td>
<td>17.0%</td>
<td>17.8%</td>
<td>16.7%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.9%</td>
<td>6.2%</td>
<td>7.9%</td>
<td>6.9%</td>
<td>7.0%</td>
<td>7.0%</td>
<td>7.0%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.7%</td>
<td>28.7%</td>
<td>24.9%</td>
<td>25.4%</td>
<td>28.5%</td>
<td>29.0%</td>
<td>25.9%</td>
<td>28.0%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>46.9%</td>
<td>46.4%</td>
<td>49.4%</td>
<td>49.5%</td>
<td>46.9%</td>
<td>46.0%</td>
<td>48.6%</td>
<td>48.1%</td>
</tr>
<tr>
<td>Average Republican</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Divergence from</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Actual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>2.5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Democratic Candidate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillary Clinton</td>
<td>65.9%</td>
<td>62.0%</td>
<td>66.5%</td>
<td>66.9%</td>
<td>69.4%</td>
<td>61.0%</td>
<td>70.0%</td>
<td>68.3%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>34.1%</td>
<td>38.0%</td>
<td>33.5%</td>
<td>33.1%</td>
<td>30.6%</td>
<td>39.0%</td>
<td>30.0%</td>
<td>31.7%</td>
</tr>
<tr>
<td>Average Democratic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.9</td>
<td>0.6</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Divergence from</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
<td>0.6</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Actual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>3.6</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Average Party</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Divergence from</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Actual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>3.0</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>

1 Best sample precinct model election-day exit poll results and absentee/early voter telephone poll results

2 Data provided by the AP Election Research Group.
KnowledgePanel Sample Size Effects

We used all available KP sample for Florida to maximize the size of the probability-based sample, which allowed for further study of subsamples and accuracy of results. The total KP sample assigned was 3,099 with 1,860 completes (a 60% completion rate overall) that yielded 598 Republican likely voters and 520 Democratic likely voters. By selecting all available KP sample, demographic characteristics may not reflect the current population profile, due to ongoing recruitment and panel attrition.

PPS Subsamples of KP. While the results observed with this sample were excellent, we wanted to examine whether or not we could do as well or better using smaller, but more demographically balanced KP samples, both alone and in combination with the Calibrated NPS. We used GfK’s patented method of selecting demographically balanced samples using a probability proportional to size (PPS) sample selection algorithm to reflect Florida’s demographic profile of adults 18 and older. We took the total KP sample assigned and, using a PPS selection methodology, selected increasingly smaller subsamples of assigned panelists. We then demographically re-weighted the obtained completes from the selected sample, again, to reflect the demographic profile of adults within the state of Florida. Table 10 summarizes the numbers selected out of the total sample assigned to the study along with the obtained total completes for each subsample size and the number of likely voters using the New Likely Voter model. As shown in Table 10, the number actually selected was sometimes smaller than the target PPS subsample size due to demographic constraints to ensure balance.
Table 10. Total Completes and Likely Voters by Party for KP PPS Selections

<table>
<thead>
<tr>
<th>PPS Target Size</th>
<th>PPS Selected</th>
<th>Total Completes</th>
<th>Republican LV</th>
<th>Democratic LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1032</td>
<td>575</td>
<td>163</td>
<td>145</td>
</tr>
<tr>
<td>850</td>
<td>825</td>
<td>489</td>
<td>152</td>
<td>126</td>
</tr>
<tr>
<td>600</td>
<td>596</td>
<td>330</td>
<td>95</td>
<td>91</td>
</tr>
<tr>
<td>450</td>
<td>448</td>
<td>250</td>
<td>72</td>
<td>64</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>162</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>84</td>
<td>26</td>
<td>14</td>
</tr>
</tbody>
</table>

In our comparisons of the average error of the likely voters from the PPS subsamples of the various sizes (Table 11), we found that, as might be expected, error generally increased with smaller subsamples. Looking at Table 11, we found that the N=600 PPS subsample was the smallest assigned sample size (with 95 Republican and 91 Democratic likely voters) that would obtain the correct order of candidates in both contests. PPS samples with less than 600 cases (PPS450, PPS300, and PPS150) were associated with a higher average error, and in some cases an incorrect order of candidate outcomes.
Table 11. Vote Outcomes for Likely Voters from Total KP Sample and KP-PPS Subsample Selections

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>Actual</th>
<th>All KP</th>
<th>PPS1100</th>
<th>PPS850</th>
<th>PPS600</th>
<th>PPS450</th>
<th>PPS300</th>
<th>PPS150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted Cruz</td>
<td>17.1%</td>
<td>16.5%</td>
<td>18.3%</td>
<td>16.0%</td>
<td>20.2%</td>
<td>24.1%</td>
<td>22.9%</td>
<td>16.6%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.8%</td>
<td>7.6%</td>
<td>10.4%</td>
<td>3.9%</td>
<td>5.5%</td>
<td>8.5%</td>
<td>9.8%</td>
<td>10.7%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.0%</td>
<td>23.8%</td>
<td>18.7%</td>
<td>23.4%</td>
<td>22.1%</td>
<td>38.2%</td>
<td>18.1%</td>
<td>32.5%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>45.7%</td>
<td>47.2%</td>
<td>48.1%</td>
<td>49.3%</td>
<td>49.5%</td>
<td>24.1%</td>
<td>45.0%</td>
<td>35.7%</td>
</tr>
<tr>
<td>Other - inactive</td>
<td>3.3%</td>
<td>4.9%</td>
<td>4.5%</td>
<td>7.4%</td>
<td>2.6%</td>
<td>5.1%</td>
<td>4.1%</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Democratic Candidate</th>
<th>Actual</th>
<th>All KP</th>
<th>PPS1100</th>
<th>PPS850</th>
<th>PPS600</th>
<th>PPS450</th>
<th>PPS300</th>
<th>PPS150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillary Clinton</td>
<td>64.4%</td>
<td>65.5%</td>
<td>67.7%</td>
<td>61.1%</td>
<td>66.9%</td>
<td>73.7%</td>
<td>59.8%</td>
<td>55.0%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>33.3%</td>
<td>33.1%</td>
<td>30.6%</td>
<td>37.7%</td>
<td>30.2%</td>
<td>26.3%</td>
<td>38.9%</td>
<td>45.0%</td>
</tr>
<tr>
<td>Other - inactive</td>
<td>2.3%</td>
<td>1.5%</td>
<td>1.7%</td>
<td>1.3%</td>
<td>3.0%</td>
<td>0.0%</td>
<td>1.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Average Error</td>
<td>1.1</td>
<td>2.8</td>
<td>3.0</td>
<td>2.4</td>
<td>7.4</td>
<td>3.8</td>
<td>6.0</td>
<td></td>
</tr>
</tbody>
</table>

PPS samples and Calibrated KP+NPS blending. Using the demographically-balanced PPS samples, we re-weighted each sample separately and then blended the full NPS with each KP-PPS subsample using our calibration methodology. The NPS had 873 Republican and 976 Democratic likely voters. There was no subsample selection of the NPS. Due to the constant NPS size, NPS became a greater proportion of the total calibrated sample size as selected KP sample got smaller. We compared the overall election results for each weighted Calibrated KP-PPS+NPS sample against the actual election results, reflected in Table 12.
Table 12. Vote Outcomes for Likely Voters from Calibrated KP-PPS+NPS Subsample Comparisons

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>Actual</th>
<th>All Calibrated KP+NPS</th>
<th>Calibrated PPS1100</th>
<th>Calibrated PPS850</th>
<th>Calibrated PPS600</th>
<th>Calibrated PPS450</th>
<th>Calibrated PPS300</th>
<th>Calibrated PPS150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted Cruz</td>
<td>17.1%</td>
<td>16.4%</td>
<td>15.9%</td>
<td>15.8%</td>
<td>16.2%</td>
<td>16.2%</td>
<td>16.2%</td>
<td>15.9%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.8%</td>
<td>6.6%</td>
<td>5.9%</td>
<td>4.8%</td>
<td>5.1%</td>
<td>5.2%</td>
<td>5.2%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.0%</td>
<td>24.3%</td>
<td>23.5%</td>
<td>24.6%</td>
<td>24.4%</td>
<td>24.1%</td>
<td>25.3%</td>
<td>23.7%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>45.7%</td>
<td>47.3%</td>
<td>49.2%</td>
<td>49.0%</td>
<td>49.0%</td>
<td>49.1%</td>
<td>47.8%</td>
<td>49.9%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>3.3%</td>
<td>5.4%</td>
<td>5.5%</td>
<td>5.9%</td>
<td>5.3%</td>
<td>5.3%</td>
<td>5.5%</td>
<td>5.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Democratic Candidate</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillary Clinton</td>
<td>64.4%</td>
<td>65.4%</td>
<td>66.5%</td>
<td>65.8%</td>
<td>66.4%</td>
<td>66.3%</td>
<td>66.8%</td>
<td>65.8%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>33.3%</td>
<td>32.3%</td>
<td>30.4%</td>
<td>31.2%</td>
<td>30.3%</td>
<td>30.6%</td>
<td>30.0%</td>
<td>30.5%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>2.3%</td>
<td>2.3%</td>
<td>3.1%</td>
<td>3.0%</td>
<td>3.3%</td>
<td>3.1%</td>
<td>3.2%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Average Error</td>
<td>1.1%</td>
<td>2.1%</td>
<td>1.9%</td>
<td>2.0%</td>
<td>2.0%</td>
<td>1.9%</td>
<td>2.1%</td>
<td></td>
</tr>
</tbody>
</table>

When compared to the KP-PPS-only subsamples, the Calibrated KP-PPS+NPS samples showed lower and relatively stable average error of about 2.0 percentage points (comparable with the NEP exit poll average value of 2.2 percentage points), regardless of the core KP-PPS subsample size. However, all of the Calibrated KP-PPS+NPS subsamples showed a higher average error than the full Calibrated KP+NPS sample (with 1.1 percentage points average error).

SRS subsamples of KP. To help inform how well we might do in smaller states with much smaller starting samples than we had available in Florida, we also explored the implications of smaller starting sample sizes with simple random subsamples (SRS). Such samples are expected to reflect some of the demographic misalignments that KP-only samples, on average, may exhibit for smaller geographic locations. Table 13 has the numbers of completes for each sample size selection.
Table 13. Total Completes and Likely Voters by Party for KP-SRS Selection

<table>
<thead>
<tr>
<th>SRS Selected</th>
<th>Total Completes</th>
<th>Republican LV</th>
<th>Democratic LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>675</td>
<td>220</td>
<td>190</td>
</tr>
<tr>
<td>850</td>
<td>515</td>
<td>191</td>
<td>132</td>
</tr>
<tr>
<td>600</td>
<td>368</td>
<td>127</td>
<td>107</td>
</tr>
<tr>
<td>450</td>
<td>259</td>
<td>86</td>
<td>72</td>
</tr>
<tr>
<td>300</td>
<td>183</td>
<td>66</td>
<td>46</td>
</tr>
<tr>
<td>150</td>
<td>88</td>
<td>25</td>
<td>29</td>
</tr>
</tbody>
</table>

After selection, the SRS subsamples were each demographically re-weighted. Table 14 summarizes the weighted vote proportions by SRS subsample size, along with average error. The average errors for these SRS subsamples were, for the most part, higher than observed with the comparably sized PPS subsamples. Results indicated that for the SRS 300 subsample (with 66 Republican and 46 Democratic likely voters), average errors did not exceed 4.2 percentage points. The order of candidates in vote proportions was consistent, and correct, for all SRS subsamples except for the smallest – the SRS subsample of 150 had a huge average error (15.0 percentage points), completely reversing the order of the two Democratic candidates and showing Kasich outperforming Cruz among the Republican candidates.
Table 14. Vote Outcomes for Likely Voters from Total KP Sample and KP-SRS Subsample Selections

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>Actual</th>
<th>All KP</th>
<th>SRS1100</th>
<th>SRS850</th>
<th>SRS600</th>
<th>SRS450</th>
<th>SRS300</th>
<th>SRS150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted Cruz</td>
<td>17.1%</td>
<td>16.5%</td>
<td>19.6%</td>
<td>20.0%</td>
<td>14.1%</td>
<td>13.9%</td>
<td>14.9%</td>
<td>8.7%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.8%</td>
<td>7.6%</td>
<td>6.8%</td>
<td>6.2%</td>
<td>6.3%</td>
<td>10.8%</td>
<td>7.0%</td>
<td>14.4%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.0%</td>
<td>23.8%</td>
<td>22.0%</td>
<td>22.5%</td>
<td>26.5%</td>
<td>19.2%</td>
<td>27.6%</td>
<td>16.8%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>45.7%</td>
<td>47.2%</td>
<td>46.3%</td>
<td>42.8%</td>
<td>41.8%</td>
<td>51.6%</td>
<td>41.1%</td>
<td>60.1%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>3.3%</td>
<td>4.9%</td>
<td>5.3%</td>
<td>8.4%</td>
<td>11.3%</td>
<td>4.5%</td>
<td>9.4%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Democratic Candidate</th>
<th>Actual</th>
<th>All KP</th>
<th>SRS1100</th>
<th>SRS850</th>
<th>SRS600</th>
<th>SRS450</th>
<th>SRS300</th>
<th>SRS150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillary Clinton</td>
<td>64.4%</td>
<td>65.5%</td>
<td>56.5%</td>
<td>57.9%</td>
<td>58.4%</td>
<td>66.7%</td>
<td>64.7%</td>
<td>35.0%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>33.3%</td>
<td>33.1%</td>
<td>42.2%</td>
<td>38.1%</td>
<td>41.1%</td>
<td>33.3%</td>
<td>35.3%</td>
<td>65.0%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>2.3%</td>
<td>1.5%</td>
<td>1.4%</td>
<td>4.0%</td>
<td>0.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Average Error</td>
<td>1.1</td>
<td>4.0</td>
<td>3.8</td>
<td>4.2</td>
<td>3.0</td>
<td>2.1</td>
<td>15.0</td>
<td></td>
</tr>
</tbody>
</table>

SRS samples and Calibrated KP+NPS blending. Based on the SRS subsamples, we demographically re-weighted each subsample separately and then blended the full NPS sample with each KP-SRS subsample using our calibration methodology (and as mentioned above in the PPS section, the NPS had 873 Republican and 976 Democratic likely voters, and there was no subsample selection of the NPS). We compared the overall election results for each weighted KP-SRS+NPS subsample combination against the actual election results, which is reflected in Table 15.
Table 15. Vote Outcomes for Likely Voters from Calibrated KP-SRS+NPS Subsamples

<table>
<thead>
<tr>
<th>Republican Candidate</th>
<th>Actual</th>
<th>All Calibrated KP+NPS</th>
<th>Calibrated SRS1100</th>
<th>Calibrated SRS850</th>
<th>Calibrated SRS600</th>
<th>Calibrated SRS450</th>
<th>Calibrated SRS300</th>
<th>Calibrated SRS150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted Cruz</td>
<td>17.1%</td>
<td>16.4%</td>
<td>16.3%</td>
<td>16.5%</td>
<td>16.1%</td>
<td>15.6%</td>
<td>16.7%</td>
<td>15.1%</td>
</tr>
<tr>
<td>John R. Kasich</td>
<td>6.8%</td>
<td>6.6%</td>
<td>5.3%</td>
<td>5.3%</td>
<td>5.2%</td>
<td>5.7%</td>
<td>5.1%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Marco Rubio</td>
<td>27.0%</td>
<td>24.3%</td>
<td>23.8%</td>
<td>23.9%</td>
<td>24.0%</td>
<td>22.8%</td>
<td>24.9%</td>
<td>26.1%</td>
</tr>
<tr>
<td>Donald J. Trump</td>
<td>45.7%</td>
<td>47.3%</td>
<td>49.0%</td>
<td>48.4%</td>
<td>48.8%</td>
<td>50.7%</td>
<td>47.8%</td>
<td>48.0%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>3.3%</td>
<td>5.4%</td>
<td>5.6%</td>
<td>5.9%</td>
<td>6.0%</td>
<td>5.2%</td>
<td>5.5%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Democratic Candidate</th>
<th>Actual</th>
<th>All Calibrated KP+NPS</th>
<th>Calibrated SRS1100</th>
<th>Calibrated SRS850</th>
<th>Calibrated SRS600</th>
<th>Calibrated SRS450</th>
<th>Calibrated SRS300</th>
<th>Calibrated SRS150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillary Clinton</td>
<td>64.4%</td>
<td>65.4%</td>
<td>65.0%</td>
<td>65.4%</td>
<td>65.4%</td>
<td>66.1%</td>
<td>65.7%</td>
<td>66.3%</td>
</tr>
<tr>
<td>Bernie Sanders</td>
<td>33.3%</td>
<td>32.3%</td>
<td>32.0%</td>
<td>31.1%</td>
<td>31.2%</td>
<td>30.4%</td>
<td>30.6%</td>
<td>31.0%</td>
</tr>
<tr>
<td>Other - inactive candidate</td>
<td>2.3%</td>
<td>2.3%</td>
<td>3.0%</td>
<td>3.5%</td>
<td>3.4%</td>
<td>3.5%</td>
<td>3.7%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

| Average Error | 1.1 | 1.5 | 1.8 | 1.8 | 2.3 | 1.7 | 1.7 | |

We found that the Calibrated KP-SRS+NPS subsamples yielded a lower average error than the comparable Calibrated KP-PPS+NPS subsamples (1.8 average percentage points for SRS combinations versus 2.0 point average for PPS combinations). Further, the Calibrated KP-SRS+NPS subsamples showed a lower average error than comparable KP-PPS-only subsamples. The Calibrated KP-SRS+NPS subsample average was also lower than the values obtained with the NEP exit poll which was 2.2 percentage points. These findings concerning SRS subsamples will need to be retrospectively replicated in the earlier states we have studied.

Electorate Demographics and Attitudes

Comparing methodologies and samples. We next examined the demographics and attitudes of respondents based on vote choice for each party’s primary, comparing our online samples against the NEP results. Appendix A reflects normal demographic weighting for KP-only sample and for the blended Calibrated KP+NPS sample for both parties’ primaries. The intermediate results for the NEP exit poll are also presented in Appendix A. Appendix B shows...
results for KP-only sample and Calibrated KP+NPS sample after each had been post-stratified to the election outcomes. Appendix B also presents the final results for the NEP exit poll, which were also weighted to election outcomes. To assess comparability between results from GfK’s online poll and the results from the NEP exit poll, we computed the absolute difference between the online study and the exit poll for each proportion of each level of the demographic and attitudinal variables for each candidate (when the exit poll did not suppress presentation of the results due to low sample sizes). We averaged the deviations by item and then averaged the deviations across all items. We did this for each contest within each state and for each sample and weighting combination. Table 16 summarizes the average percentage-point deviations from exit poll values for these sample and weighting combinations.

Table 16. Comparing Exit Poll Results with Online Voter Demographics and Attitudes

<table>
<thead>
<tr>
<th></th>
<th>Pre-election Weighted Results</th>
<th>Results Weighted to Election Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KP-only Sample Average Deviation</td>
<td>Calibrated (KP+NPS) Sample Average Deviation</td>
</tr>
<tr>
<td>Republican Primary</td>
<td>3.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Democratic Primary</td>
<td>5.8</td>
<td>5.4</td>
</tr>
<tr>
<td>Average</td>
<td>4.7</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Similar to findings from the GA-IL study, we found that, in general, KP-only sample had a higher average deviation from exit poll results than did Calibrated KP+NPS sample. Post-stratifying by election outcomes (for both the exit polls and online poll results) further reduced the differences between the online samples and the exit poll. This convergence between the online results and the exit poll results is expected due to the increased similarity of weighting.
Conclusions

Lessons Learned and Next Steps

- Once again, the findings support the superiority of the New Likely Voter model and support the choice of the simpler model in future work.

- As was found in the 2014 GA-IL study, online polling with the KP-only and the Calibrated KP+NPS samples conducted in the days leading up to the election had substantially lower average error than the NEP exit poll. The KY-MS study also demonstrated the ability to accurately predict the election outcome with an online poll using KP and Calibrated KP+NPS. However, no exit poll was conducted in the election to allow for a comparison.

- While the four-day field period showed a smaller average error than the seven-day field period, the lowest error was found when looking at both samples combined. This warrants some caution in using only the four-day field period immediately preceding Election Day, especially given the increasing portion of ballots being completed in early voting or by absentee ballot. We plan to compare results for early versus late Florida survey responders in an effort to further investigate the differences between the two field period lengths. In addition, we will examine the differences in early versus late survey responders in the two prior studies (GA-IL and KY-MS).

- Though the overall results reflected lower error for both the KP and Calibrated KP+NPS samples than the NEP exit poll, a look at the results broken out by early/absentee and Election Day showed that the NEP telephone poll had higher error while Election Day exit poll had lower error than both the KP-only and Calibrated KP+NPS samples.
• Using SRS to select a subset of KP panelists in Florida in conjunction with calibrated NPS participants led to an even lower average error than when using PPS subsampling of KP combined with calibrated NPS participants. We will further explore these findings in two ways. First, since sampling error is larger with smaller sample sizes, we intend to apply repeated sampling and select numerous subsamples at the smaller sizes to gain some stability in these results and evaluate the sampling distribution. Second, we will revisit the GA-IL and KY-MS studies and select SRS subsamples to see if these findings from the FL study are replicated (previously we had only selected PPS subsamples in those states).

• With the subsample experiments summarized in this paper, we used all available NPS. A related issue in trying to find the smallest KP sample size that will still produce consistently valid results is also identifying the smallest NPS sample size that can yield accurate results, in order to minimize costs. We will conduct additional analyses with the Florida primary study, along with the earlier GA-IL and KY-MS studies, to address this question. Similar to the approach used with KP sample, we will select subsamples of the NPS participants and assess the average error on these NPS subsamples.

• In a preliminary analysis, we found an even simpler likely voter model that was limited to two questions – voter registration and likelihood of voting – somewhat improved projected election results. We will go back through the data we collected in GA-IL and KY-MS to see if this even simpler likely voter model worked at least as well in those state elections.
References

Fahimi, M., Barlas, F. M., Thomas, R. K., & Buttermore, N. (2015). Scientific surveys based on incomplete sampling frames and high rates of nonresponse. *Survey Practice, 8 (5).*

ISSN: 2168-0094